
RESEARCH ARTICLE

Mechanical Ventilation Alters the
Development of Staphylococcus aureus
Pneumonia in Rabbit
Saber-Davide Barbar1, Laure-Anne Pauchard1, Rémi Bruyère1, Caroline Bruillard1,
Davy Hayez2, Delphine Croisier2, Jérôme Pugin3, Pierre-Emmanuel Charles1*

1 Laboratoire “Ventilation Immunité Poumon”, Pôle Microbiologie Environnementale et Risque Sanitaire (M.
E.R.S.), U.M.R. 1347, I.N.R.A., Université de Bourgogne, Dijon, France, 2 Vivexia S.A.R.L., Gemeaux,
France, 3 Intensive Care Laboratory, University Hospitals of Geneva, and Department of Microbiology and
Molecular Medicine, Faculty of Medicine, 1211 Geneva 14, Switzerland

* pierre-emmanuel.charles@chu-dijon.fr

Abstract
Ventilator-associated pneumonia (VAP) is common during mechanical ventilation (MV).

Beside obvious deleterious effects on muco-ciliary clearance, MV could adversely shift the

host immune response towards a pro-inflammatory pattern through toll-like receptor (TLRs)

up-regulation. We tested this hypothesis in a rabbit model of Staphylococcus aureus VAP.
Pneumonia was caused by airway challenge with S. aureus, in either spontaneously breath-

ing (SB) or MV rabbits (n = 13 and 17, respectively). Pneumonia assessment regarding pul-

monary and systemic bacterial burden, as well as inflammatory response was done 8 and

24 hours after S. aureus challenge. In addition, ex vivo stimulations of whole blood taken

from SB or MV rabbits (n = 7 and 5, respectively) with TLR2 agonist or heat-killed S. aureus
were performed. Data were expressed as mean±standard deviation. After 8 hours of infec-

tion, lung injury was more severe in MV animals (1.40±0.33 versus [vs] 2.40±0.55, p =

0.007), along with greater bacterial concentrations (6.13±0.63 vs. 4.96±1.31 colony forming

units/gram, p = 0.002). Interleukin (IL)-8 and tumor necrosis factor (TNF)-αserum concen-

trations reached higher levels in MV animals (p = 0.010). Whole blood obtained from MV

animals released larger amounts of cytokines if stimulated with TLR2 agonist or heat-killed

S. aureus (e.g., TNF-α: 1656±166 vs. 1005±89; p = 0.014). Moreover, MV induced TLR2

overexpression in both lung and spleen tissue. MV hastened tissue injury, impaired lung

bacterial clearance, and promoted a systemic inflammatory response, maybe through

TLR2 overexpression.

Introduction
Mechanical ventilation (MV) is sometimes the only way to care for critically ill patients with
respiratory failure, many adverse effects, including ventilator-associated pneumonia (VAP),
are common [1, 2]. Actually, VAP occurs in up to 27% of these patients (23.5 per 1,000
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ventilator-days) [3]. During bacterial pneumonia, a rapid immune lung response is necessary
to ensure microbial clearance. In the airways, both bronchial and alveolar epithelial cells take
part in the host innate immune response, mainly through their ability to produce inflammatory
mediators [4]. It is now clearly recognized that innate immunity is activated through pattern
recognition receptor-related pathways [5]. Among the pattern recognition receptors, toll-like
receptors (TLRs) play a key role in the recognition of the so-called pathogen-associated micro-
bial patterns. TLRs can recognize a wide range of pathogen-associated microbial patterns and
generate inflammatory signals to modulate innate immune responses [6]. Among the bacteria
causing VAP, Gram-positive bacteria, especially Staphylococcus aureus, are frequently respon-
sible for infection and mortality [7]. Cell wall components of Gram-positive bacteria, such as
bacterial lipopeptides, activate TLR2. TLR2 expression has been detected in immune cells, as
well as in endothelial or epithelial cells [8]. Ligand-specific recognition and signaling occurs via
heterodimerisation with TLR1 or TLR6 [6, 9]. Interestingly, TLR2 expression seems to be sen-
sitive to mechanical stress, as shown in the endothelium [10].

Both in vitro and in vivo experimental studies have demonstrated that MV, in particular
adverse ventilatory strategies with high tidal volume and zero end-expiratory pressure could
activate lung cells, thus leading to a proinflammatory response, even in the absence of bacterial
stimuli. This is the biotrauma paradigm, which is responsible, at least in part, for so-called Ven-
tilator Induced Lung Injury (VILI), the hallmark of which is the infiltration of polymorphonu-
clear neutrophils (PMNs) into the lungs [11]. Although low-stretch MV does not lead to such
apparent tissue damage or inflammation, it could prime airway cells to respond massively to a
second proinflammatory insult, through the subsequent release of large amounts of cytokines,
thus leading to additional lung injury, particularly through the recruitment of neutrophils as a
result of interleukin (IL)-8 secretion [12]. This has been clearly demonstrated in several animal
models based on airway challenge with lipopolysaccharide (LPS) combined with MV. It has
been shown that MV increased lung injury and promoted pulmonary-to-systemic endotoxin
translocation [13–15]. Innate immunity activation thereby plays a major role in the develop-
ment of VILI [5]. The involvement of toll-like receptors, especially TLR4, has been suggested
by several experimental studies [16, 17]. Moreover, it has been hypothesized that MV-depen-
dent lung priming depended on the TLR4 pathway when LPS models were used, thus illustrat-
ing the “two-hit” paradigm [13–15, 18]. However, little is known about the possible
implication of other TLRs and related microbial ligands in MV-dependent lung injury.

Indeed, we have previously demonstrated in vitro that cyclic stretch of human pulmonary
cells resulted in TLR2 overexpression and enhanced TLR2 reactivity to Gram-positive cell wall
components [19]. These findings were confirmed in a rabbit model since MV increased lung
injury in response to the instillation of a specific TLR2 agonist. Our findings suggested that
MV could prime the lung, through TLR2 up-regulation, promoting thereby lung inflammation
and injury in the case of subsequent infectious insult. In an attempt to determine the relevance
of this finding in the pneumonia setting, as well as its potential impact on the antimicrobial
host defense, we conducted experiments using live Gram-positive bacteria specifically recog-
nized by TLR2 (i.e., S. aureus)

Materials and Methods

Bacterial Challenge
The methicillin-resistant S. aureus (MRSA) USA 300 Panton Valentine Leukocidin (PVL)
(negative) clinical strain (kindly provided by G. Lina, Lyon, France) was used in this study.
Working stock cultures were kept frozen in a 15% glycerol-supplemented brain-heart infusion
(BioMérieux Laboratories, Marcy-l’Etoile, France). They were changed monthly. Colonies
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isolated from one infected rabbit’ spleen cultures were used to preserve bacterial virulence (as
planned into the protocol submitted to the Ethical committee). Actually, S. aureus pneumonia
was induced and sacrifice occurred 48 hours later, as described below. Several bacterial colonies
isolated from spleen culture were then collected and inoculated into brain-heart infusion. After
6-hour incubation at 37°C, one bacteria suspension was obtained. Aliquots were then prepared
and stored at -80°C.

At 48 hours before experimentation began, several colonies were taken, cultured on MRSA2
agar plates (BioMérieux) and then incubated for 24 hours at 37°C. One colony was inoculated
into 10 milliliters (mL) of brain-heart infusion and was incubated for 6 hours at 37°C before
being cultured on MRSA2 agar plates for 18 hours at 37°C. The inocula concentration was esti-
mated by optical densitometry, in reference to a standard curve, and systematically checked by
a quantitative culture by plating successive ten-fold dilutions. A mean titer of 9.5 log10 colony-
forming units (CFU) per mL was used in this study since pneumonia obtained with lower val-
ues was too mild and transient [20].

Animal experiments
Male New Zealand White rabbits (body weight 2.8 to 3.2 kilograms [kg]) were obtained from
the “Elevage scientifique des Dombes” (Romans, France). They were placed in individual cages
and were fed ad libitum with water and food, according to current recommendations. The Eth-
ics Committee of Dijon Faculty of Medicine approved the experimental protocol (N. 0810). A
central venous catheter was surgically inserted into the left jugular internal vein 24 hours before
randomization.

The animals (n = 40) were randomly allocated to the SB group or the MV group (n = 18 and
22, respectively) (Fig 1).

In the spontaneously breathing (SB) group, the rabbits were orally intubated as previously
described [21, 22]. Briefly, under general anaesthesia provided by an intravenous injection of
ketamine 3.3 milligrams (mg)/kg (Panpharma, France) and xylazine 1 mg/kg (Rompun1,
Bayer, Germany), a cuff tube of 3.0 mm was orally inserted into the trachea under view control.
Unscheduled death occurred during the procedure in 4 rabbits, accounting for the fact that
there was not equal number of animals in every concurrent group. Those deaths were related
to the general anaesthesia procedure itself since unexpected drug adverse effects might occur in
some rabbits.

The SB rabbits then received an intrabronchial instillation of 9.5 log10 CFU/mL of S. aureus
diluted in 0.5 mL of saline (n = 5), through a silicon catheter (Sigma Medical, Nanterre, France)
inserted into the tracheal tube. The inoculum was gently flushed through the catheter until one
lower lobe bronchus was reached. Spontaneously breathing controls received 0.5 mL of saline
(n = 5). The catheter was immediately removed, the animals were rapidly extubated, and were
then allowed to go back to their cage before being killed 8 or 24 hours later (n = 5 and 8,
respectively).

In the MV group, the animals were intubated as described above, and then were connected
to a volume-controlled ventilator (Servo ventilator 900C1, Siemens, Germany). MV was per-
formed in the supine position with a continuous infusion of midazolam (0.06 mg.kg-1.h-1)
(Hypnovel1, Roche, Switzerland) and cisatracurium besilate (0.3 mg.kg-1.h-1) (Nimbex1,
GlaxoSmithKline, U.K.). The tidal volume was set at 12 ml/kg with zero end-expiratory pres-
sure in order to submit the lung to a cyclic stretch magnitude likely to drive TLR2 up-regula-
tion as previously described [19]. In addition, the respiratory rate was set at 25/minute and the
inspired fraction of oxygen at 0.5. During the MV, the animals were positioned on a heating
blanket to maintain body normothermia, and hydration with isotonic serum was provided
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intravenously to maintain a stable hemodynamic status in the context of MV. An arterial cath-
eter was inserted in most of these animals for blood sampling and blood pressure monitoring.
Arterial blood gas was analyzed every 8 hours and the respiratory rate adjusted to keep PaCO2

within a 35–45 mmHg range. Plateau pressure was monitored hourly.
The animals were subjected to MV for 24 hours before being given an intrabronchial instil-

lation of 9.5 log10 CFU/mL of S. aureus diluted in 0.5 mL of saline, as described above. MV
controls received 0.5 mL of saline (n = 5). The animals were then kept under MV for 8 or 24
hours before being killed (n = 6 and 11, respectively).

Material Harvesting
Blood samples were collected from the arterial catheter (at the start of the experiment, after 24
hours of MV and then 1,2,4 and 8 hours after the intrabronchial instillation) and centrifuged at
1,000 g for 15 minutes at 4°C; the supernatant was divided into 0.5 ml aliquots and stored at
-80°C for cytokine concentration measurements.

At the end of the experiment, the animals were killed by an intravenous overdose of thio-
pental (i.e., 100 mg/kg).

Fig 1. Timeline representation of the experimental protocol. *denotes blood sample drawing.

doi:10.1371/journal.pone.0158799.g001
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In both groups, the animals were exsanguinated by venous puncture. Autopsies were carried
out so that the lungs and spleen were aseptically taken. Immediately after exsanguination, the
heart and lungs were carefully removed en block via midline sternotomy.

The left lung was lavaged with 2 mL of sterile saline. The broncho-alveolar lavage fluid
(BALF) was centrifuged at 400 g and 4°C to pellet the cells and the supernatant was stored at
-80°C for further cytokine determination.

The lungs were harvested for ribonucleic acid (RNA) extraction. Additional samples were
obtained for microscopic examination.

The remaining lung tissue was homogenized for the determination of cytokine concentra-
tions and for bacterial culture.

The spleen was harvested for RNA extraction, and the remaining spleen tissue was homoge-
nized for cytokine concentration measurements and bacterial culture.

Cytokine Measurements
TNF-alpha and IL-8 concentrations were measured in plasma, whole blood supernatants, lung
homogenates and bronchoalveolar lavage fluid (BALF) supernatants using rabbit specific
enzyme-linked immunosorbent assay (ELISA) kit (Uscn Life Science Inc., Wuhan, China). The
lower limits of the assays were 15.6 picograms/mL for both TNF-alpha and IL-8.

Quantitative Reverse Transcriptase (RT)-Polymerase Chain Reaction
(PCR)
All gene expression analyses were done 8 hours after lung exposure to either saline, Pam3Cys-
SerLys4 (Pam3CSK4) or S. aureus, since peak values were achieved within this timeframe in
previous studies [19]. RNA was extracted from lung samples using the RNA GenElute kit
(Sigma-Aldrich, St Louis, MO, USA). Quantitative PCR was performed using IQ Sybergreen
Supermix (Bio-Rad, Hercules, CA, USA). Melting curves were performed to ensure the pres-
ence of a single amplicon. The following primers were used: rTlr2, forward 5’-TGT CTG TCA
CCG AAC CGA ATC CAC-3’ and reverse 5’-TCA GGT TTT TCA GCG TCA GCA GGG-3’
[23]; rIl-8, forward 5’-AAC CTT CCT GCT GCT TCT GA-3’ and reverse 5’-TCT GCA CCC
ACT TTT TCC TTG-3’; TNFα, forward 5’-CAA GCC TCT AGC CCA CGT A-3’ and reverse
5’- GGC AAT GAT CCC AAA GTA G-3’; and rGapdh, forward 5’-ATG TTT GTG ATG GGC
GTG AAC C-3’ and reverse 5’-CCC AGC ATC GAA GGT AGA GGA-3’.

The results are expressed as the fold induction using the ΔCt method [24] since the SB ani-
mals were always considered as the baseline condition.

Histological Analysis
A tissue sample of 1 cm3 that focused on a macroscopic lesion from the cranial and caudal
lobes was fixed in formalin and embedded in paraffin. Five-micrometre sections were obtained
and coloured with haematoxylin and eosin. Two pathologists blinded to the group assignment
examined all slides. After viewing approximately five fields per sector under low and high
power, each section was assigned a numerical histologic score ranging from 0 to 3 as previously
described [25] according to the degree of PMNs infiltration, haemorrhage, and oedema in the
interstitial and alveolar spaces: 0 (normal), normal-appearing lung; 1 (mild), mild congestion,
interstitial oedema, and interstitial PMNs infiltrate with occasional red blood cells and neutro-
phils in the alveolar spaces; 2 (moderate), moderate congestion and interstitial oedema with
neutrophils partially filling the alveolar spaces but without consolidation; 3 (severe), marked
congestion and interstitial oedema, with neutrophilic infiltrate nearly filling the alveolar spaces,
or with frank lung consolidation. Atelectasis per se was disregarded and not scored as
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abnormal. For each criterion, when disagreements occurred between the observers, the definite
score was defined as the mean of each pathologist’s score.

Microbiological Evaluation of Pneumonia
Each pulmonary lobe was isolated from the whole lung, homogenized in sterile water. Bacteria
were counted in a sample of this crude homogenate by plating 10-fold dilutions on Chapman
agar plates (BioMérieux) and incubating the plates for 24 h at 37°C. For each lobe, the bacterial
concentration was adjusted to its weight.

The mean bacterial pulmonary concentration was calculated according to each lobar con-
centration with lobar weight (e.g., mean concentration = ∑ [lobar concentration x lobar
weight]/ lobar weights). The spleen of each rabbit was also removed, crushed, and cultured. An
S. aureus-positive spleen culture was considered a marker of bacteraemia.

Reagents
The α-Human TLR2 monoclonal antibody (mAb) T2.5 (mouse IgG1κ) was kindly provided by
Novimune (Plan-les-Ouates, Switzerland), and its relevant isotype control was purchased from
Becton Dickinson Biosciences (Franklin Lakes, NJ, U.S.A.).

Synthetic triacyled lipoprotein Pam3CSK4 was purchased from Invivogen (San Diego, CA,
U.S.A.).

Whole blood assay
Fresh heparinized blood from either SB or MV rabbits (12 mL/kg, ZEEP over a 48 hour-period)
(n = 7 and 5, respectively), was obtained by venipuncture and diluted 1:2 with RPMI 1640.
Blood was immediately plated at 120 μL/well in a 96-well plate and incubated for 15 minutes at
37°C.

In some experiments, either mAb T2.5 or IgG1κ were diluted with RPMI 1640 (10 μg/mL in
60 μL final volume) and added to rabbit whole blood at room temperature [9]. One hour later
60 μL of Pam3CSK4 (100 ng/mL) or heat-killed S. aureus (USA300 strain; 9 log CFU warmed at
90°C for 60’) were added and the blood was then incubated for 24 hours at 37°C. This concen-
tration corresponded to the maximal response observed with the TLR2 agonist in preliminary
experiments (data not shown). Cell culture supernatants were finally removed and kept frozen
at -80°C until IL-8 and TNF- α concentrations were determined.

Statistical analysis
All data were expressed as the mean±standard deviation or median [Interquartile range] as
specified.

Group size determination was based on previous experience [19].
Data were tested for normal distribution with the D'Agostino-Pearson normality omnibus

K2 test or with the Kolmogorov–Smirnov test when n was too small.
Continuous variables between the different study groups (i.e., SB vs. MV animals unless oth-

erwise specified) were compared using parametric one-way analysis of variance for normally
distributed data if appropriate. When the difference between groups was significant with the
above tests, the group or groups that differed from the others were identified using the Bonfer-
roni multiple comparison test. When the data were not normally distributed, the nonparamet-
ric Mann-Whitney U test or the Wilcoxon test was applied if appropriate.

For temporally repeated data (i.e. for serum cytokine concentrations), changes over time
were assessed in each group using one-way repeated-measures analysis of variance for
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normally distributed data. Differences between the times were identified using the Bonferroni
multiple comparison test after repeated-measures analysis of variance when significance was
reached.

All test were two-tailed. A p value lower than 0.05 was considered as statistically significant.
GraphPad Prism software was used (GraphPad Software, San Diego California, USA).

Results
Main supporting information is provided as an electronic zip file (S1 File).

Mechanical ventilation worsens lung damage and impairs bacterial lung
clearance
We developed an animal model of S. aureus VAP in lungs previously subjected to MV.

As previously reported, 32 hours of MV alone induced lung damage, including inter-alveo-
lar septa thickened by cell infiltrate and alveoli loss of aeration (Fig 2A and 2B). The histologi-
cal score (Fig 3) was significantly greater in the MV group (0.13±0.20 versus [vs.] 0.86±0.10,
p = 0.002). In the setting of pneumonia, 8 hours after tracheal instillation of S. aureus, we
observed increased cellularity, predominantly neutrophils, and fibrin stranding in alveoli, once
again predominantly in the MV group (Fig 2C and 2D), resulting in a worse histological score
(1.40±0.33 vs. 2.40±0.55, p = 0.011). Later during the course of infection, (i.e., 24 hours after
bacterial challenge), lung injury was still greater in the MV group (Fig 2E and 2F), but the
scores did not differ significantly anymore (2.35±0.42 vs. 2.67±0.49, p = 0.216). Altogether,
these findings suggest that lung damage was more severe and earlier in animals subjected to
MV and pneumonia than in SB animals with pneumonia.

The bacterial burden was higher in the MV group both after 8 hours (5.00±1.02 vs. 5.87±0.38
log10CFU/g, p = 0.050) and 24 hours of MV (4.96±1.31 vs. 6.13±0.63 log10CFU/g, p = 0.007)
(Fig 4A and 4B).

Similarly, when S. aureus lung concentrations were expressed as percentages of the inocu-
lum size, bacterial clearance was found to be impaired in MV animals 24 hours after bacterial
challenge (65.3 vs. 48.0% of the inoculum in MV and SB respectively, p = 0.045) (Fig 5).

In addition, MV probably promoted early pulmonary-to-systemic translocation during S.
aureus pneumonia, as indicated by the quantitative spleen culture results, which reflected the
occurrence of bacteraemia (Fig 4C and 4D). Actually, cultures became positive as early as the
8th hour solely in some rabbits in the MV group. Interestingly, S. aureus spleen concentrations
became comparable thereafter (1.48±0.66 vs. 1.47±0.82 log10CFU/g, p = 0.110).

Mechanical ventilation does not significantly alter the lung inflammatory
response to S. aureus
In animals subjected to MV alone, lung expression of the inflammatory cytokine IL-8 gene (Fig
6A) was significantly greater than that in their SB counterparts (p = 0.031). The corresponding
IL-8 protein level within lung homogenates (Fig 7A) and BALF (Fig 7C) tended to be greater in
MV animals at the 8th hour. However, the difference was only significant for BALF (71.82±21.80
vs. 189.22±83.92, p = 0.010) but not for lung homogenate (135.5±11.3 vs. 823.6±544.1, p =
0.333). In the animals infected with S. aureus, both IL-8 gene expression and protein release
were higher than in non-infected ones (Figs 6A, 7A and 7C). However, we did not find any sig-
nificant difference between SB and MV groups.

Regarding TNF-α, another inflammatory mediator of paramount importance, lung gene
expression was not significantly increased in animals subjected to MV, whether or not they
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were infected with S. aureus (Fig 6B). However, the TNF-α protein level within lung homoge-
nates (Fig 7B) was higher in MV than in SB non-infected rabbits (150.5±24.3 vs. 533.1±198.8,
p = 0.004) but there was no difference between the two groups of S. aureus-infected rabbits at
both time points. In contrast, no significant difference was found when BALF concentrations
were considered (Fig 7D).

Mechanical ventilation exacerbates the systemic inflammatory response
to S. aureus
Plasma concentrations of IL-8 and TNF-α were measured in animals‘ plasma at baseline and
several time-points thereafter (i.e., 1, 2, 4, 8, 12, 18 and 24 h after S. aureus instillation).

Fig 2. Lung injury main features according to the experimental condition. Six representative light
microphotographs of rabbit lungs in various conditions fixed at the same transpulmonary pressure
(hematoxylin and eosin x400): (A) spontaneously breathing (SB) healthy rabbit (SB); (B) healthy rabbits
submitted to a 32-hours mechanical ventilation (MV); (C) SB rabbits 8 hours after tracheal instillation of 109

CFU of Staphylococcus aureus; (D) MV rabbits 8 hours after tracheal instillation of 109 CFU of bacteria; (E)
SB rabbits 24 hours after tracheal instillation of 109 CFU of S. aureus; (F) MV rabbits 24 hours after tracheal
instillation of 109 CFU of S. aureus. We observed interalveolar septa thickened by an interstitial cell infiltrate
and several alveoli collapsed mainly in the MV groups (B, D, F). CFU: colony forming unit.

doi:10.1371/journal.pone.0158799.g002
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Changes over time were assessed by repeated-measures analysis of variance. Time course anal-
ysis showed that levels of IL-8 (Fig 8A) at the 8th hour of MV had increased to a greater extent
than those measured in SB rabbits, though the difference was not statistically significant. How-
ever, a significantly higher TNF-α level was measured in the serum of MV animals than in
serum from their SB counterparts (mean difference = -56.11 [-104.7 to -7.547] 95% CI;
p = 0.010), in spite of the recovery of similar amounts of bacteria from spleen cultures at the
last time-point, as described above (Fig 8B).

In another set of experiments, IL-8 and TNF-α were measured in whole blood obtained
from either SB or MV rabbits. Ex vivo stimulations by the synthetic bacterial lipopeptide
Pam3CSK4, a specific TLR2 agonist, as well as heat-killed S. aureus were performed in each
group in an attempt to mimic S. aureus cell-wall products release from the lung and bacterae-
mia, respectively. As expected, in the absence of any microbial stimulation, a mild but not sig-
nificant elevation of both IL-8 and TNF-α was measured in blood obtained from MV animals
when compared to SB ones (Fig 9A and 9B). Whereas Pam3CSK4 alone failed to elicit the

Fig 3. Histologic score according to the experimental condition. Histologic score ranging from 0 to 3, based on the degree
of polymorphonuclear infiltration, haemorrhage, and oedema in the interstitial and alveolar spaces, following tracheal
instillation of saline (controls) in either spontaneously breathing (SB, n = 5) rabbits or animals subjected to mechanical
ventilation (MV, n = 5). Infected animals were challenged with 109 CFU of Staphylococcus aureus. After bacterial challenge
animals were kept SB or under MV for 8 hours (n = 5 and 6, respectively) and 24 hours (n = 8 and 11, respectively). The
histologic score was higher under MV. ** denotes p<0.05 between SB and MV animals; ns: not significant. CFU: colony
forming unit. Controls SB versus (vs) MV p = 0.002; Mann-Whitney U test, two-tailed. S. aureus pneumonia SB vs MV 8 hours
p = 0.011; Mann-Whitney U test, two-tailed. S. aureus pneumonia SB vs MV 24 hours p = 0.216; Mann-Whitney U test, two-
tailed.

doi:10.1371/journal.pone.0158799.g003
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release of inflammatory mediators from the whole blood drawn in SB animals, it mounted a
significant response in the MV group. Moreover, our data suggest a synergic effect of the com-
bination of MV with the TLR2 agonist if considering TNF-α release. Similarly, the responsive-
ness of whole blood fromMV animals to heat-killed S. aureus, in terms of both IL-8 and TNF-
α elevation was significantly greater that in blood from SB animals (e.g., TNF-α: 1656±166 vs.
1005±89; p = 0.014).

Fig 4. Pulmonary and systemic bacterial burden of Staphylococcus aureus. (4A) S. aureus lung concentrations 8
and 24 hours after bacteria instillation. Pulmonary bacterial burden according to the experimental group in either
spontaneously breathing (SB + S. aureus) or mechanically ventilated (MV + S. aureus) animals with Staphylococcus aureus
pneumonia 8 hours after inoculation (n = 5 and 6, respectively) and 24 hours after inoculation (n = 8 and 11 respectively).
The bacterial burden was higher in the MV group both after 8 hours (5.00±1.03 versus [vs.] 5.87±0.38 log10CFU/g, p = 0.028)
and 24 hours of MV (4.96±1.31 vs. 6.13±0.63 log10CFU/g, p = 0.002). *denotes p�0.05. CFU: colony forming unit. (4B) S.
aureus spleen concentrations 8 and 24 hours after bacteria instillation. Spleen bacterial burden according to the
experimental group in either spontaneously breathing (SB + S. aureus) or mechanically ventilated (MV + S. aureus) animals
with Staphylococcus aureus pneumonia (n = 4 and 5, respectively*). Interestingly, MV appears to promote early pulmonary-
to-systemic translocation during S. aureus pneumonia, as indicated by the quantitative spleen cultures, as an indirect marker
of bacteraemia, which were positive only in ventilated animals after 8 hours, even though there was no longer any difference
after 24 hours. *spleen was lost in 1 animal from each group. Lung S. aureus concentrations SB versus (vs) MV 8 hours
p = 0.050; Mann-Whitney U test, two-tailed. Lung S. aureus concentrations SB vs MV 24 hours p = 0.007; Mann-Whitney U
test, two-tailed. Spleen S. aureus concentrations SB vs MV 8 hours p = 0.430; Mann-Whitney U test, two-tailed. Spleen S.
aureus concentrations SB vs MV 24 hours p = 0.110; Mann-Whitney U test, two-tailed.

doi:10.1371/journal.pone.0158799.g004
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Mechanical ventilation increases both lung and systemic expression of
TLR2
Attempting to explain in vivo differences regarding inflammatory responsiveness to S. aureus
between SB and MV rabbits in both the pulmonary and systemic compartments, TLR2 gene
expression was evaluated in lung and spleen homogenates, respectively. Spleen was actually
considered a surrogate for peripheral blood mononuclear cells [26]. In addition, TLR2 block-
ade was achieved through media incubation with the T2.5 Mab prior to stimulation during ex
vivo experiments.

It is worth noting that lung expression of the TLR2 gene was significantly increased under
MV (Fig 10A). Similarly, and to a greater extent, MV promoted TLR2 gene expression in
spleen homogenates (Fig 10B). However, interestingly, TLR2 ex vivo blockade failed to abro-
gate the excessive release of inflammatory mediators by whole blood obtained fromMV ani-
mals, excepting TNF-α in response to heat-killed S. aureus (Fig 9A and 9B). These findings
suggest that TLR2 overexpression in MV animals could account, at least in part, for the over-
whelming systemic inflammatory response.

Discussion
In line with our previous data regarding stretch-dependent lung TLR2 overexpression, the aim
of this study was to find out to what extent MV could alter the immune and inflammatory
response to S. aureus in a rabbit model of VAP. To this purpose, we challenged the airways
with a strong S. aureus inoculum in animals subjected to a 24 hour-MV prior to infection, and
compared them to SB infected controls at both “early” (i.e., 8 hours), or “late” (24 hours) stages
of pneumonia.

Fig 5. Lung bacterial clearance. Pulmonary bacterial clearance expressed as a percentage of the reduction
of log10CFU 8 and 24 hours after inoculation with Staphylococcus aureus in either spontaneously breathing
(SB + S. aureus; n = 5 and 6, respectively), or mechanically ventilated (MV + S. aureus; n = 8 and 11,
respectively) animals. *denotes p�0.05. CFU: colony forming unit. Pulmonary S. aureus clearance SB
versus MV 24 hours: p = 0.045; Mann-Whitney U test, two-tailed.

doi:10.1371/journal.pone.0158799.g005
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We report herein the following findings:

• MV impairs bacterial lung clearance and to a lesser extent promotes early pulmonary-to-sys-
temic translocation during S. aureus pneumonia

• MV worsens lung damage including PMN infiltration, without increasing the local release of
inflammatory mediators including IL-8.

• in contrast, systemic inflammation was strongly exacerbated by MV, perhaps reflecting an
increased responsiveness to bacterial products within this compartment as shown ex vivo.

These results are consistent with our previous findings [19, 21, 22, 27, 28]. However, it is
worth noting that some differences exist with respect to the pathogen involved. In addition, the
present study provides new insights regarding the impact of MV on bacterial pneumonia.

First, the present data show that the lung’s ability to keep S. aureus growth in check is
impaired by MV. This deleterious effect of MV becomes obvious at the early stage of infection
(i.e., at the 8th hour). Interestingly, these findings are in accordance with previous reports from
our group concerning other pathogens (e.g., Enterobacter sp. and Streptococcus pneumoniae).
Moreover, to the best of our knowledge, this is the first study to demonstrate such major delete-
rious effects of MV in a MRSA VAP model, thereby illustrating the peculiar severity of these
infections. Dhanireddy et al. failed to demonstrate any significant impact of lung stretch on S.
aureus clearance in mice with pneumonia subjected to 12 hours of MV [14]. Our model, how-
ever, is more relevant to the clinical scenario of VAP since animals were subjected to 24 hours
of MV prior to bacterial challenge. In addition, it has been shown that rabbit TLRs are more

Fig 6. Inflammatory cytokine gene expression in the lung. (6A) IL-8 gene expression in the lung. Inflammatory cytokine
interleukin (IL)-8 gene expression in lung homogenates 8 hours after tracheal instillation of saline (controls) in either
spontaneously breathing (SB, n = 5) rabbits or animals subjected to mechanical ventilation (MV, n = 5), or after challenge with 109

CFU of Staphylococcus aureus (+S. aureus) (n = 5 in each group**). All values are reported as fold increase compared with SB
rabbits. Results are expressed as mean±standard deviation. IL-8 gene expression was increased under MV in all groups.
*denotes p�0.05; ns: not significant; **PCR amplification failed in 1 MV rabbit. CFU: colony forming unit. Controls SB versus (vs)
MV p = 0.008, Mann-Whitney U test, two-tailed. S. aureus SB vs MV p = 0.873, Mann-Whitney U test, two-tailed. (6B) TNF-α gene
expression in the lung. Inflammatory cytokine tumor necrosis factor (TNF)-α gene expression in lung homogenates 8 hours after
tracheal instillation of saline (controls) in either spontaneously breathing (SB, n = 5) rabbits or animals subjected to mechanical
ventilation (MV, n = 5), or after challenge with 109 CFU of Staphylococcus aureus (+S. aureus) (n = 5 in each group). All values are
reported as fold increases compared with SB rabbits. Results are expressed as mean±standard deviation TNF-α gene expression
was increased under MV only in control animals, *denotes p�0.05; ns: not significant; **Polymerase chain reaction amplification
failed in 1 MV rabbit. CFU: colony forming unit. Controls SB versus (vs) MV p = 0.076, Mann-Whitney U test, two-tailed. S. aureus
SB vs MV p = 0.825, Mann-Whitney U test, two-tailed.

doi:10.1371/journal.pone.0158799.g006
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closely related to human TLRs than to mouse TLRs [23]. In addition, if translated into the clin-
ical area, our findings might reflect the reported quite high treatment failure rate despite the
administration of highly active drugs [29]. Similarly, we showed that MV could promote pul-
monary-to-systemic bacteria translocation but only at the earliest stage of infection. Actually,
similar spleen bacterial concentrations were found in SB and MV rabbits after 24 hours despite
significantly greater lung concentrations in MV animals. This result was not expected since

Fig 7. Inflammatory cytokines in the lung. Inflammatory cytokines (interleukin [IL]-8 and tumor necrosis factor [TNF]-α) in lung
homogenates and in broncho-alveolar lavage fluid (BALF) 8 to 24 hours after tracheal instillation of saline (controls) in either
spontaneously breathing (SB, n = 5) rabbits or animals subjected to mechanical ventilation (MV, n = 5), or 8 hours (n = 5) or 24 hours
(n = 10) after challenge with 109 CFU of Staphylococcus aureus (+S. aureusH8 and H24). IL-8 levels were increased in lung
homogenates and in BALF under MV in controls, but we did not find any significant difference between SB and MV groups after
bacterial challenge. Similarly, TNF-α levels were significantly increased in lung homogenates from animals under MV than in controls,
but not after bacterial challenge. ** denotes p<0.05; ns: not significant; ND: concentration below the limits of detection of the assay.
CFU: colony forming unit. (A) Controls SB versus (vs) MV p = 0.333, Mann-Whitney U test, two-tailed. S. aureusH8 SB vs MV
p = 0.397, Mann-Whitney U test, two-tailed. S. aureusH24 SB vs MV p = 0.395, Mann-Whitney U test, two-tailed. (B) Controls SB vs
MV p = 0.004, Mann-Whitney U test, two-tailed. S. aureusH8 SB vs MV p = 0.413, Mann-Whitney U test, two-tailed. S. aureusH24 SB
vs MV p = 0.881, Mann-Whitney U test, two-tailed. (C) Controls SB vs MV p = 0.024, Mann-Whitney U test, two-tailed. S. aureusH8
SB vs MV p = 0.114, Mann-Whitney U test, two-tailed. S. aureusH24 SB vs MV p = 0.700, Mann-Whitney U test, two-tailed. (D) S.
aureusH8 SB vs MV p = 0.829, Mann-Whitney U test, two-tailed. S. aureusH24 SB vs MV p = 0.700, Mann-Whitney U test, two-
tailed.

doi:10.1371/journal.pone.0158799.g007
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cumulative experimental evidence supports the hypothesis that MV promotes bacterial spill
over from the lung [13, 21, 30]. Moreover, clinical data showed that S. aureus VAP was more
likely to be associated with bacteraemia than was pneumonia caused by other pathogens [31,
32]. Our findings are, however, in line with those obtained previously in mice [14]. In addition,
the propensity of bacteria to reach the bloodstream depends on the host immune response as
well as virulence factors [33]. Indeed, in this study we used a PVL-deleted USA300 strain.
Interestingly, our group has recently shown in rabbits that bacteraemia was achieved in every
animal if pneumonia was caused by the original USA300 strain (i.e., PVL+), thus emphasizing
the role of the toxin [20]. Of note, we chose the PVL- strain because of the expected high mor-
tality rate associated with toxin production as previously reported, which would have not pro-
vide us the opportunity to evaluate the effect of such a long-term MV.

Regarding lung damage, the present findings confirmed previous ones, since S. aureus
caused significantly greater injury in animals subjected to MV than in their SB counterparts.
However, although this difference was obvious at the early stage of pneumonia (i.e., 8 hours
after bacterial challenge), lung disease severity was similar at the 24th hour, suggesting that
lung stretch might have hastened the spread of tissue injury, especially PMN infiltration. This
phenomenon has already been described in animal models of VILI, which showed that the
more adverse the MV settings, the earlier the VILI features became obvious [34]. However,
these findings do not clearly support the hypothesis that MV primes the lung before bacterial
challenge occurs within the airways, thus driving lung overreaction, in accordance with the
“two-hit” paradigm [35]. Actually, the experimental design does not allow us to determine
whether the reported effects of MV were related to MV “pre-exposure” and/or to the MV
period following bacterial challenge. Nevertheless, we have hypothesized and demonstrated
previously in both human cells and rabbit lung that stretch-dependent TLR2 overexpression in
the lung could account for lung priming [19]. Stretch-dependent TLRs 2 and 4 have also been

Fig 8. Time course of mean serum inflammatory cytokine concentrations during experiment. Serum concentrations of
interleukin (IL)-8 (Fig 8A) and tumor necrosis factor (TNF)-α (Fig 8B) measured by enzyme-linked immune-sorbent assay at baseline,
just before intra-tracheal instillation of 109 CFU of Staphylococcus aureus, in the spontaneously breathing (SB+S.aureus) and the
mechanically ventilated (MV+S.aureus) animals, and then 1, 2, 4, 8, 12, 18 and 24 hours after instillation (n = 15). Significant changes
over time in each group were assessed by repeated-measures analysis of variance followed by the post hoc Bonferroni multiple
comparison test when significance was reached. *denotes variations with time significantly different between MV groups versus SB
groups; ns: not significant. CFU: colony forming unit. (A) repeated-measures ANOVAmean difference = -69.35 [-141.7 to +2.969] 95%
CI; p = ns). (B) repeated-measures ANOVAmean difference = -56.11 [-104.7 to -7.547] 95% CI; p = 0.010).

doi:10.1371/journal.pone.0158799.g008
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Fig 9. Inflammatory cytokines in whole blood stimulated ex vivo by either Pam3CSK4, or S. aureus. Interleukin (IL)-8 and tumor necrosis factor
(TNF)-α levels in total blood stimulated ex vivo by Pam3CysSerLys4 (Pam3CSK4) (Fig 9A) or Staphylococcus aureus (Fig 9B) in either spontaneously
breathing (SB, n = 7) rabbits or animals subjected to mild-stretch mechanical ventilation (MV, n = 5), with or without the anti-toll-like receptor (TLR)2
monoclonal antibody (Mab) T2.5. Interleukin-8 levels were not significantly greater in blood obtained from rabbits under MV than in controls but the
difference reached statistical significance after stimulation by Pam3CSK4 and S. aureus as well. Similarly, TNF-α levels were not significantly higher in
blood taken fromMV animals than in blood from SB animals. In contrast, Pam3CSK4 stimulation led to the release of significantly larger amounts of TNF-α
in the MV than in the SB group, as did S. aureus stimulation. Although TLR2 blockade by T2.5 Mab did not abrogate the release of inflammatory mediators
by the whole blood obtained from either SB or MV animals after Pam3CSK4 stimulation, TNF-α but not IL-8 release reached baseline values when Mab
was added to media prior to S. aureus stimulation. * denotes p<0.05 between SB and MV animals. (A) IL-8 Controls: SB versus (vs) MV p = 0.010, Mann-
Whitney U test, two-tailed. Pam3CSK4 SB vs MV p = 0.010, Mann-Whitney U test, two-tailed. Pam3CSK4 + T2.5 SB vs MV p = 0.002, Mann-Whitney U
test, two-tailed. Pam3CSK4 + IgG1k SB vs MV p = 0.002, Mann-Whitney U test, two-tailed. TNF-α: Controls SB vs MV p = 0.075, Mann-Whitney U test,
two-tailed. Pam3CSK4 SB vs MV p = 0.030, Mann-Whitney U test, two-tailed. Pam3CSK4 + T2.5 SB vs MV p = 0.002, Mann-Whitney U test, two-tailed.
Pam3CSK4 + IgG1k SB vs MV p = 0.030, Mann-Whitney U test, two-tailed. (B) IL-8: Controls SB vs MV p = 0.010, Mann-Whitney U test, two-tailed. S.
aureus SB vs MV p = 0.029, Mann-Whitney U test, two-tailed. S. aureus + T2.5 SB vs MV p = 0.029, Mann-Whitney U test, two-tailed. S. aureus + IgG1k
SB vs MV p = 0.200, Mann-Whitney U test, two-tailed. TNF-α Controls SB vs MV p = 0.075, Mann-Whitney U test, two-tailed. S. aureus SB vs MV
p = 0.057, Mann-Whitney U test, two-tailed. S. aureus + T2.5 SB vs MV p = 0.343, Mann-Whitney U test, two-tailed. S. aureus + IgG1k SB vs MV
p = 0.657, Mann-Whitney U test, two-tailed.

doi:10.1371/journal.pone.0158799.g009
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demonstrated in other animal models of VILI [36, 37]. We should, however, admit that the
data provided by the present study using live bacteria instead of one specific TLR2 agonist were
not so consistent. Although pulmonary S. aureus concentrations were quite similar at the early
time-point (i.e., 8th hour), it is worth noting that the release of neither IL-8 nor TNF-α in the
lung was significantly increased by the combination of MV and infection, despite the fact that
greater amounts of bacteria were simultaneously recovered from the lung. Several explanations
could be considered. Firstly, some authors have discussed the relevance of biotrauma in animal
models of VILI, arguing that the mechanical insult per se could account for tissue injury [38].
Secondly, lung reactivity to S. aureusmight depend on the bacterial strain, as recently reported
[39]. We cannot therefore exclude the possibility that lipoprotein expression within the S.
aureus wall changes not only with time but also according to the underlying environmental
conditions (e.g., according to lung stretch). Moreover, it has been shown that the activation
profile of circulating neutrophils in the pulmonary and extra-pulmonary blood flow varies
according to lung conditions [40]. It is therefore possible that the excess lung damage was sub-
sequent to primed neutrophil retention rather than to TLR2 overexpression, as described in
patients with acute respiratory distress syndrome (ARDS). Finally, since IL-8 lung release was
not increased by MV, other PMN chemoattractant mediators might be involved, acting as pro-
inflammatory signals other than the usually assessed chemokines and cytokines. Indeed, the
involvement of so-called alarmins in the onset of VILI has recently been raised and needs fur-
ther investigation [41].

Our study also addressed the issue of systemic inflammatory response in the setting of S.
aureus VAP. As mentioned above, we failed to demonstrate clearly that MV associated with
bacterial challenge increased lung inflammation, as reflected by pulmonary gene expression or
cytokine concentrations. However, and in contrast, we observed a rising systemic inflamma-
tory response (i.e., plasma levels of IL-8 and TNF-α), as early as the 8th hour only in animals
with pneumonia subjected to MV. It is worth noting that the amount of circulating live bacte-
ria, according to spleen cultures, was mild over this period, regardless of ventilation. One can-
not exclude, however, the possibility that lung stretch promoted the translocation of killed
bacteria or bacterial products (e.g., cell wall components) from the lung, as shown with LPS,

Fig 10. Toll-like receptor 2 gene expression. TLR2 gene expression was measured in both lung (left) and spleen homogenates
(right) in either spontaneously breathing rabbits (SB) or animals subjected to mechanical ventilation (MV) (n = 5 in each group). All
values are reported as fold increases compared with SB rabbits. Results are expressed as mean±standard deviation. * denotes
p<0.05 between SB and MV animals. (A) Controls SB versus (vs) MV p<0.001, Wilcoxon test, two-tailed. (B) Controls SB vs MV
p<0.001, Wilcoxon test, two-tailed.

doi:10.1371/journal.pone.0158799.g010
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since lung damage was found to be more severe in the MV group [13]. Inflammatory mediator
spill over from the lung should not be ruled out but seems unlikely since similar concentrations
were measured within the tissue.

In order to investigate this issue, a second set of experiments was carried out, with special
emphasis on the role of TLR2. Our results suggest that the systemic inflammatory response
observed in this model of VAP depended, at least in part, on a TLR2 pathway in peripheral
white blood cells. Actually, we showed that MV alone led to TLR2 gene overexpression in the
spleen. Indeed, the results of ex vivo experiments suggest that the whole blood obtained from
rabbits subjected to MV overreacted to one TLR2 agonist and to heat-killed S. aureus as well.
However, blocking TLR2 with a specific monoclonal antibody did not completely abrogate the
release of IL-8 in this setting, in contrast with TNF-α which concentrations dramatically fell
until reaching levels near from baseline values.

Altogether, these data suggest that the activation of pathways different from TLRs could
also be involved, accounting thereby for the overwhelming and protracted systemic inflamma-
tory response we measured in animals with both MV and pneumonia. Indeed, we could
hypothesize that in the context of S. aureus pneumonia, other pro-inflammatory signals are
released in much larger amounts into the blood compartment of animals subjected to MV than
in SB ones. These could be alarmins, released by the injured lung and likely to activate the host
response through the inflammasome. Interestingly, as previously described, each pathway
could drive the production of different inflammatory mediators. Indeed, IL-8 and TNF-α
behaved differently in our ex vivo experiments when TLR2 was blocked, suggesting that IL-8
production did not depend on the TLR2 pathway alone.

In addition, a recently published study showed that if “primed” PMNs crossed the alveolo-
capillary barrier, they were “deprimed” thereafter as leaving the pulmonary circulation, pro-
vided the lungs were healthy [40]. In contrast, the authors observed that in ARDS patients, this
depriming process was impaired, thus leading in turn to the circulation of activated inflamma-
tory cells toward extra-pulmonary organs. Of course, further experiments are necessary to clar-
ify these issues. It is worth noting for instance that the PMN activation profile was not assessed
in the present study.

Nevertheless, our data suggest that in addition to the lung, the systemic compartment was
likely to overreact to microbial challenge, thus accounting, at least in part, for the greater degree
of inflammation measured in MV animals.

Several limitations of our study should be mentioned. First, the MV without PEEP we used
could be considered as non-clinically relevant, since it is likely to promote cyclic opening and
closing of lung units. However, it has recently been reported that such settings were still used,
especially in the operating room [42]. In addition, it is known that lung injury is heterogeneous
in ARDS patients. As a result, poorly aerated areas of the lung usually coexist with over-
stretched ones, even if “low-VT” (i.e., 6 mL per ideal body weight) is applied, as shown in
human studies [43]. Although cautiously, one could assume that such parts of the lung may
react as described in the present study if bacterial challenge with S. aureus occurred in patients
subjected to MV. However, adding a group of animals subjected to some more protective MV
settings would be of interest. Second, TLR2 assessment was limited to gene expression. We can-
not therefore draw any strong conclusions regarding this point since the corresponding protein
was not measured directly within the lung or the spleen. Moreover, it is uncertain whether epi-
thelial cells, macrophages or PMNs expressed TLR2 the most. We should also acknowledge
that by using SB animals as controls, lung stretch was not the only factor evaluated. Actually,
one cannot exclude the possibility that other mechanisms, such as impaired airway drainage
subsequent to tracheal intubation, prolonged supine position and general anesthesia as well,
could account, at least in part, for the lower bacterial clearance rate we report here. However,
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we have previously published data showing that when mild-stretch MV was compared with
low-stretch MV in a Gram-negative bacteria VAP model, the latter strategy was likely to favor
the host regarding this point [28]. In addition, we used one bacterial inoculum which size
could be considered as greater than usually encountered in the clinical setting. Finally, the fact
that animals were not given antibiotics made questionable any translation to the clinical area.
Further experimental studies are therefore needed.

Even although the first experimental evidence of VILI was published 40 years ago [44], the
so-called lung-protective MV settings became the recommended standard of care only in the
early 2000s thanks to the ARDS network publication [45]. This strategy thus remains restricted
to patients with ARDS. However, most preclinical studies showed that MV using low tidal vol-
umes was likely to dampen the injurious effects of MV in animals with previously healthy
lungs [46, 47]. Today, there is growing evidence that the use of lower tidal volumes also benefits
patients who do not have obvious lung injury. In a recent meta-analysis, some authors showed
a significantly lower incidence of pulmonary infection with the use of lung-protective ventila-
tion with lower tidal volumes [48]. Others showed a reduction in major pulmonary complica-
tions requiring MV (i.e. pneumonia) with lung-protective MV in patients who underwent
major abdominal surgery [49]. Finally, despite the growing knowledge in this field, up to 16%
of patients continue to receive non-protective ventilation in the operating room [42]. Alto-
gether, these data strongly suggest that MV-related lung-stretch could be harmful, even if
applied to apparently healthy tissue, maybe because of an increased risk of severe pneumonia if
the airways are challenged with bacteria. Our findings thus send a word of warning to physi-
cians who deal with mechanically ventilated patients, especially if these patients develop bacte-
rial pneumonia.

Conclusions
In a rabbit model of S. aureus VAP, we showed that mild-stretch MV was likely to impair lung
bacterial clearance, hasten tissue injury, and promote a systemic inflammatory response. TLR2
overexpression in both pulmonary and peripheral blood may play a role, but other factors
likely to drive such overwhelming inflammation should be sought.
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