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a b s t r a c t 

Objectives: As daptomycin adjunction is currently under clinical evaluation in the multicentre phase II 

AddaMAP study to improve the prognosis of pneumococcal meningitis, the present work aimed at eval- 

uating the in vitro antimicrobial activity of daptomycin-based combinations against some of the most 

frequent species responsible for bacterial meningitis. 

Methods: Clinically relevant strains of Streptococcus pneumoniae, Listeria monocytogenes, Haemophilus in- 

fluenzae and Neisseria meningitidis were obtained from National Reference Centers. The antimicrobial ac- 

tivity of amoxicillin, cefotaxime and rifampicin, either alone or in association with daptomycin, was ex- 

plored through the determination of minimum inhibitory concentration (MIC) and fractional inhibitory 

concentration index (FICI) as well as time–kill assay (TKA) using the broth microdilution method. 

Results: All species taken together, the adjunction of daptomycin had no deleterious impact on the an- 

timicrobial activity of amoxicillin, cefotaxime or rifampicin in vitro . Regarding Gram-positive bacteria, FICI 

and TKA analysis confirmed a global improvement of growth inhibition and bactericidal activity due to 

the adjunction of daptomycin. The synergistic effect prevailed for L. monocytogenes as demonstrated by 

FICI mainly < 0.5 and a dynamic TKA-based synergy rate > 50%. In addition, daptomycin-based associa- 

tions did not modify the activity of β-lactam antibiotics or rifampicin against Gram-negative bacteria, 

notably N. meningitidis . 

Conclusion: These results bring comforting evidence towards the clinical potential of daptomycin adjunc- 

tion in the treatment of bacterial meningitis, which supports the ongoing AddaMAP clinical trial. 

© 2021 The Author(s). Published by Elsevier Ltd on behalf of International Society for Antimicrobial 

Chemotherapy. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Bacterial meningitis remains one of, if not the most, severe and 

eadly infectious diseases [1] . Owing to intrinsic virulence factors, 

treptococcus pneumoniae is responsible for the highest morbimor- 

ality associated with infectious meningitis worldwide as well as 
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ong-term neurological and cognitive impairment [2–4] . Moreover, 

he recent resurgence in Europe and North America of pneumococ- 

al meningitis due to non-vaccine serotypes as well as an increased 

raction of S. pneumoniae strains with reduced sensitivity to third- 

eneration cephalosporins in France [5] highlighted the need for 

 novel approach regarding prevention and treatment [6] . Despite 

 global reliance on the use of β-lactam antibiotics [ 7 , 8 ], several

tudies suggest a significant risk of worsening cerebral lesions and 

asculitis owing to the release of pro-inflammatory toxins during 

acterial cell lysis [ 9 , 10 ]. As non-bacteriolytic antibiotics may help 
iety for Antimicrobial Chemotherapy. This is an open access article under the CC 
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o contain such an excessive inflammatory burst of the host re- 

ponse, a number of research groups have evaluated the potential 

se of clindamycin, rifampicin and daptomycin in order to decrease 

he global level of cerebrospinal fluid (CSF) inflammation in exper- 

mental models of pneumococcal meningitis [11] . On the basis of 

dditional promising results from this preclinical development in 

ivo , the adjunction of daptomycin to standard treatment with a 

hird-generation cephalosporin was demonstrated as a good candi- 

ate to attenuate brain damage and to hope for an improved clin- 

cal outcome of patients with pneumococcal meningitis [12] . Fol- 

owing a similar approach, the adjunction of daptomycin was in- 

ended for clinical evaluation in a multicentre phase II study to 

mprove the prognosis and survival of pneumococcal meningitis 

AddaMAP Study; ClinicalTrials.gov ID: NCT03480191), with pos- 

ible inclusion upon clinical suspicion only. However, its impact 

n the activity of standard treatment towards other species as- 

ociated with bacterial meningitis remains unknown. The present 

tudy aimed at evaluating the in vitro antimicrobial activity of 

aptomycin-based associations against the most frequent species 

esponsible for bacterial meningitis. 

. Materials and methods 

.1. Bacterial strains and culture 

The main characteristics of all bacterial species and isolates are 

ummarised in Supplementary Table S1. Four S. pneumoniae clini- 

al strains were isolated from either blood culture or CSF from pa- 

ients with pneumococcal meningitis and were kindly provided by 

he National Centre for Pneumococci (Dr Emmanuelle Varon). Liste- 

ia monocytogenes reference clinical and food isolates were kindly 

rovided by the National Reference Center and WHO Collaborat- 

ng Centre Listeria at the Institut Pasteur (Prof. Marc Lecuit). Three 

aemophilus influenzae non-typeable clinical strains were selected 

rom among reference isolates (ATCC 49766) and CSF cultures of 

atients hospitalised with bacterial meningitis in University Hos- 

ital of Dijon (Dijon, France). Four Neisseria meningitidis clinical 

trains (serotypes W, B and C) were isolated from blood cultures 

f patients with meningococcal meningitis and were kindly pro- 

ided by the National Reference Center for Meningococci (Prof. 

uhamed-Kheir Taha). 

All bacterial species and isolates were stored in CryoBeads TM at 

80 °C. Isolates of S. pneumoniae (under 5% CO 2 ) and L. monocy- 

ogenes were incubated to stationary phase at 37 °C on Columbia 

gar with 5% sheep blood (bioMérieux) for 18–24 h. Isolates of 

. influenzae (under 5% CO 2 ) and N. meningitidis were grown 

n chocolate agar PolyViteX (bioMérieux). Mueller–Hinton broth 

Difco) supplemented with 50 mg/L Ca 2 + , 12.5 mg/L Mg 2 + , 5% 

ysed horse blood and 20 mg/L β-NAD (MHF) was prepared accord- 

ng to European Committee on Antimicrobial Susceptibility Test- 

ng (EUCAST)/Comité de l’Antibiogramme de la Société Française 

e Microbiologie (CA-SFM) 2019 guidelines regarding susceptibility 

esting of fastidious micro-organisms. MHF was used for all broth 

icrodilution minimum inhibitory concentration (MIC), fractional 

nhibitory concentration index (FICI) and time–kill kinetics experi- 

ents. 

.2. Minimum inhibitory concentration (MIC) determination 

MICs were determined by the standard broth microdilution 

ethod following Clinical and Laboratory Standards Institute (CLSI) 

uidelines as described elsewhere [ 13 , 14 ]. The inoculum suspen- 

ion was adjusted in sterile water to a 0.5 McFarland suspension 

nd was subsequently diluted in MHF so that each well contained 

5 × 10 5 CFU/mL. Antibiotic solutions were prepared following a 
194 
roper dilution in MHF of aliquots of stock solution stored at –

0 °C after reconstitution of daptomycin (Cubicin 350 mg; Novar- 

is), amoxicillin (Amoxicilline 1 g; Panpharma), cefotaxime (Céfo- 

axime 1 g; Mylan) and rifampicin (Rifadin 600 mg; Sanofi Aventis) 

owders following the manufacturer’s instructions. All microdilu- 

ion plates were incubated at 37 °C for 16–20 h in an ambient air 

ncubator right after adding the inoculum, adjusting the final vol- 

me to 100 μL per well and careful sealing with a plastic film to 

revent drying. MICs were defined as the lowest concentration of 

ntimicrobial agent that completely inhibited growth of the organ- 

sm as detected by a microplate reader equipped with a standard 

bsorbance filter at 595 nm (iMark TM Microplate Reader; Bio-Rad). 

ach MIC experiment was performed in triplicate. EUCAST clini- 

al breakpoint tables v.11.0 (valid from 1 January 2021) were used 

hroughout the study for breakpoint interpretation criteria. 

.3. Fractional inhibitory concentration index (FICI) determination 

The antimicrobial activity of daptomycin-based associations 

ith either amoxicillin, cefotaxime or rifampicin was assessed us- 

ng the checkerboard dilution assay [15] . First, serial two-fold in- 

reasing concentrations of the selected antibiotics spanning sus- 

eptible to resistant breakpoints were distributed in a 96-well mi- 

roplate. As for MIC testing, the inoculum suspension was adjusted 

n sterile water to a 0.5 McFarland suspension and was subse- 

uently diluted in MHF so that each well contained ~5 × 10 5 

FU/mL with a final volume of 150 μL per well. The microplates 

ere finally incubated at 37 °C for 16–20 h in an ambient air incu- 

ator right after sealing with a plastic film to prevent drying. FICIs 

ere calculated after microplate absorbance reading at 595 nm on 

he basis of a previously described protocol [16] . Synergy was de- 

ned as FICI ≤ 0.5, indifference as FICI > 0.5 to 4, and antagonism 

s FICI > 4. Each FICI experiment was performed in triplicate. 

.4. Time–kill kinetics assay 

Microdilution time–kill methodology was adapted from the pro- 

ocol described by Clark et al. [17] . Following bacterial growth in 

HF, antimicrobial concentrations were adjusted in separate wells 

f a microplate to reach the final volume of 300 μL at one dilu- 

ion above the MIC and one to two dilutions below the MIC for 

ynergy testing ( Table 1 ). Owing to lack of antimicrobial activity of 

aptomycin against Gram-negative bacteria, the daptomycin con- 

entration was set at 8 mg/L for synergy testing against N. menin- 

itidis and H. influenzae . Drug-free controls were systematically in- 

luded. After proper sealing with a plastic film to prevent drying, 

icrodilution plates were incubated at 37 °C under gentle shaking 

or a total of 24 h in an ambient air incubator. Viability counts 

ere performed by single plate-serial dilution spotting according 

o an optimised protocol described by Thomas et al. [18] . Briefly, 

 15- μL aliquot was sampled at 0, 1, 3, 5 and 24 h (for all bacte-

ial species except S. pneumoniae ) or 0, 0.5, 1.5, 5 and 24 h (for

. pneumoniae owing to the rapid bactericidal activity of dapto- 

ycin) for subsequent serial dilution at 10 1 , 10 2 , 10 4 up to 10 6 in

lter-sterilised distilled water. Starting from the last dilution, ei- 

her Columbia or chocolate agar was used for the final spotting of 

 20- μL microdrop from each serial dilution. Plates were then al- 

owed to dry for 5–10 min before incubation at 37 °C as required 

or the selected bacterial species. Only plates with < 300 colonies 

ere enumerated. Each time–kill kinetics assay was performed in 

riplicate and was integrated as area under the curve over a 24- 

 period (AUC 0–24 ). Synergy was considered starting from a mini- 

um 2 log 10 decrease in CFU/mL between the combination and its 

ost active component at a definite time point between 30 min 

nd 24 h. In addition, any decrease of the starting inoculum ≥3 

og was considered as a killing effect. 
10 
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Table 1 

Antibiotic concentrations for time–kill kinetics assay 

Species Strain 

Concentration (mg/L or fold MIC) 

DPT AMX CTX RMP DPT/AMX DPT/CTX DPT/RMP 

Streptococcus 

pneumoniae 

SP 1 (48570) 2 × MIC 2 × MIC 2 × MIC 2 × MIC MIC/MIC MIC/MIC MIC/MIC 

SP 2 (51510) 2 × MIC 2 × MIC 2 × MIC 2 × MIC MIC/MIC MIC/MIC MIC/MIC 

SP 3 (56510) 2 × MIC 2 × MIC 2 × MIC 2 × MIC MIC/MIC MIC/MIC MIC/MIC 

SP 4 (56787) 2 × MIC 2 × MIC 2 × MIC 2 × MIC MIC/MIC MIC/MIC MIC/MIC 

Listeria 

monocytogenes 

LM 1 (EGD-e) 2 × MIC 2 × MIC 2 × MIC 2 × MIC MIC/MIC MIC/MIC MIC/MIC 

LM 2 (CLIP 

2007/01481) 

2 × MIC 2 × MIC 2 × MIC 2 × MIC MIC/MIC 0.5 × MIC/0.5 × MIC MIC/MIC 

LM 3 (CLIP 

2007/00596) 

2 × MIC 2 × MIC 2 × MIC 2 × MIC 0.5 × MIC/0.5 × MIC 0.5 × MIC/0.5 × MIC MIC/MIC 

Haemophilus 

influenzae 

HI 1 (ATCC 

49766) 

8 2 × MIC 2 × MIC 2 × MIC 8/2 × MIC 8/2 × MIC 8/2 × MIC 

HI 2 ("DUM") 8 2 × MIC 2 × MIC 2 × MIC 8/2 × MIC 8/2 × MIC 8/2 × MIC 

HI 3 ("ROU") 8 2 × MIC 2 × MIC 2 × MIC 8/2 × MIC 8/2 × MIC 8/2 × MIC 

Neisseria 

meningitidis 

NM 1 (29859) 8 2 × MIC 2 × MIC 2 × MIC 8/2 × MIC 8/2 × MIC 8/2 × MIC 

NM 2 (30496) 8 2 × MIC 2 × MIC 2 × MIC 8/2 × MIC 8/2 × MIC 8/2 × MIC 

NM 3 (30430) 8 2 × MIC 2 × MIC 2 × MIC 8/2 × MIC 8/2 × MIC 8/2 × MIC 

NM 4 (30095) 8 2 × MIC 2 × MIC 2 × MIC 8/2 × MIC 8/2 × MIC 8/2 × MIC 

MIC, minimum inhibitory concentration; DPT, daptomycin; AMX, amoxicillin; CTX, cefotaxime; RMP, rifampicin. 

Table 2 

Results of minimum inhibitory concentration (MIC) determination 

Species Strain 

Mean MIC [range] ( μg/mL) 

DPT AMX CTX RMP 

Streptococcus 

pneumoniae 

SP 1 (48570) 0.250 [0.125–0.250] 1.00 [1.00–2.00] 2.00 [2.00–4.00] 0.0312 [0.00781–0.0312] 

SP 2 (51510) 0.125 [0.125–0.125] 0.0156 [0.0156–0.0312] 0.00781 [0.00781–0.0156] 0.00781 [0.00781–0.0156] 

SP 3 (56510) 0.250 [0.125–0.250] 16.0 [16.0–16.0] 8.00 [8.00–8.00] 0.0156 [0.0156–0.0156] 

SP 4 (56787) 0.125 [0.125–0.250] 0.250 [0.250–0.250] 2.00 [2.00–2.00] 0.0156 [0.0156–0.0156] 

Listeria 

monocytogenes 

LM 1 (EGD-e) 2.00 [1.00–2.00] 0.250 [0.125–0.250] 8.00 [8.00–16.0] 0.00781 [0.00781–0.00781] 

LM 2 (CLIP 

2007/01481) 

4.00 [4.00–4.00] 0.250 [0.250–0.250] 32.0 [32.0–32.0] 0.0156 [0.0156–0.0312] 

LM 3 (CLIP 

2007/00596) 

8.00 [8.00–8.00] 0.250 [0.250–0.250] 8.00 [8.00] 0.0312 [0.0312–0.0312] 

Haemophilus 

influenzae 

HI 1 (ATCC 

49766) 

˃512 [ ˃512–˃512] 0.250 [0.250–0.250] 0.00781 [0.00781–0.00781] 0.250 [0.250–0.250] 

HI 2 ("DUM") ˃512 [ ˃512–˃512] 2.00 [2.00–2.00] 0.0312 [0.0156–0.0312] 0.250 [0.250–0.250] 

HI 3 ("ROU") ˃512 [ ˃512–˃512] 0.250 [0.250–0.250] 0.00781 [0.00781–0.00781] 0.250 [0.250–0.250] 

Neisseria 

meningitidis 

NM 1 (29859) ˃512 [ ˃512–˃512] 0.0312 [0.0312–0.0625] 0.000976 [ < 0.000976–0.000976] 0.0312 [0.0156–0.0312] 

NM 2 (30496) ˃512 [ ˃512–˃512] 0.0312 [0.0156–0.0312] 0.000976 [0.000976–0.000976] 0.0312 [0.0312–0.0312] 

NM 3 (30430) ˃512 [ ˃512–˃512] 0.0312 [0.0312–0.0312] 0.00195 [0.000976–0.00195] 0.125 [0.0312–0.125] 

NM 4 (30095) ˃512 [512–˃512] 0.500 [0.500–0.500] 0.0625 [0.0625–0.125] 0.250 [0.250–0.250] 

DPT, daptomycin; AMX, amoxicillin; CTX, cefotaxime; RMP, rifampicin. 
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.5. Statistical analysis 

All results are presented as then mean with standard error of 

he mean. Unpaired t -test analysis was performed using GraphPad 

rism 5.0 (GraphPad Software Inc., La Jolla, CA, USA) with a 95% 

onfidence interval. For the integrated analysis of time–kill curves, 

tatistical analysis compared the daptomycin combination with its 

ost active component. 

. Results 

.1. Minimum inhibitory concentration (MIC) results 

The results of MIC determination are shown in Table 2 . For S. 

neumoniae , SP 1 (48570) was resistant to both amoxicillin and ce- 

otaxime. SP 4 (56787) was susceptible to amoxicillin and resistant 

o cefotaxime. In contrast, SP 2 (51510) was susceptible to amox- 

cillin and cefotaxime, and SP 3 (56510) was resistant to both an- 

ibiotics. All S. pneumoniae strains displayed relatively low dapto- 

ycin MICs ranging from 0.125–0.250 μg/mL and were suscepti- 

le to rifampicin with MIC mainly < 0.06 μg/mL. For L. monocy- 

ogenes , all strains were susceptible to amoxicillin, displayed very 
195 
ow rifampicin MICs but rather elevated daptomycin and cefo- 

axime MICs, ranging from 2–8 μg/mL for daptomycin and 8–32 

g/mL for cefotaxime. 

Regarding Gram-negative bacteria, all H. influenzae clinical 

trains were susceptible to amoxicillin, cefotaxime and rifampicin. 

part from NM 4 (30095) interpreted as intermediate to amoxi- 

illin, all strains of N. meningitidis were susceptible to amoxicillin, 

efotaxime and rifampicin. As expected, all Gram-negative bacte- 

ial strains were highly resistant to daptomycin with MICs of > 512 

g/mL. 

.2. Fractional inhibitory concentration index (FICI) results 

Results of FICI tests are shown in Table 3 . For S. pneumoniae , the

ate of synergistic effect due to the adjunction of daptomycin was 

stimated at 50% with amoxicillin (SP 2 and SP 3) and 25% with 

efotaxime (SP 3). The combination of daptomycin and rifampicin 

howed FICIs from 1.0 0–2.0 0, i.e. in favour of an indifferent effect 

gainst S. pneumoniae . The association of daptomycin and amoxi- 

illin displayed a relative low rate of synergistic effect against L. 

onocytogenes , with only one FICI of ≤0.5 (LM 3) among the three 

elected strains. The rate increased up to 67% with cefotaxime for 
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Table 3 

Results of fractional inhibitory concentration index (FICI) determination 

Species Strain 

Mean FICI [range] 

DPT + AMX DPT + CTX DPT + RMP 

Streptococcus 

pneumoniae 

SP 1 (48570) 0.625 [0.625–0.625] 1.25 [0.625–1.25] 1.00 [1.00–1.00] 

SP 2 (51510) 0.500 [0.500–1.06] 0.750 [0.750–1.50] 1.00 [1.00–2.00] 

SP 3 (56510) 0.500 [0.500–0.750] 0.500 [0.500–0.500] 1.00 [1.00–1.50] 

SP 4 (56787) 1.00 [1.00–1.50] 0.750 [0.750–1.12] 2.00 [2.00–2.00] 

Listeria 

monocytogenes 

LM 1 (EGD–e) 0.750 [0.500–1.03] 0.625 [0.250–1.06] 0.750 [0.500–0.750] 

LM 2 (CLIP 

2007/01481) 

0.531 [0.312–0.625] 0.281 [0.187–0.516] 0.750 [0.625–1.25] 

LM 3 (CLIP 

2007/00596) 

0.500 [0.375–1.01] 0.312 [0.156–0.531] 0.625 [0.500–1.06] 

Haemophilus 

influenzae 

HI 1 (ATCC 

49766) 

n/a n/a n/a 

HI 2 ("DUM") n/a n/a n/a 

HI 3 (“ROU”) n/a n/a n/a 

Neisseria 

meningitidis 

NM 1 (29859) n/a n/a n/a 

NM 2 (30496) n/a n/a n/a 

NM 3 (30430) n/a n/a n/a 

NM 4 (30095) n/a n/a n/a 

DPT, daptomycin; AMX, amoxicillin; CTX, cefotaxime; RMP, rifampicin; n/a, not available. 

Synergy was defined as FICI ≤ 0.5, indifference as FICI > 0.5 to 4, and antagonism as FICI > 4. 

Fig. 1. Time–kill kinetics assay for Gram-positive bacteria. (A) Time–kill curves for Streptococcus pneumoniae SP 1 (48570). (B) Integrated analysis of time–kill curves for S. 

pneumoniae (AUC/24 h). (C) Time–kill curves for Listeria monocytogenes LM 1 (EGD-e). (D) Integrated analysis of time–kill curves for L. monocytogenes (AUC/24 h). AUC, area 

under the curve; CTRL, control; DPT, daptomycin; AMX, amoxicillin; CTX, cefotaxime; RMP, rifampicin; ns, not significant ( P > 0.05). 
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M 2 (CLIP 2007/01481) and LM 3 (CLIP 20 07/0 0596). Apart from 

hese situations, all FICIs calculated for daptomycin-based associa- 

ions against L. monocytogenes were mainly < 1, that is to say glob- 

lly in concordance with a potential effect of the lipopeptide. As 

ICs for both H. influenzae and N. meningitidis did not display any 

ependence towards daptomycin concentration, we were unable to 

alculate FICIs for Gram-negative bacteria. 
196 
.3. Time–kill kinetics assay 

Results from the time–kill analysis for Gram-positive and Gram- 

egative bacteria are displayed in Fig. 1 and Fig. 2 , respectively. 

hey gather a representative time–kill curve for each bacterial 

pecies and an integrated comparison of all time–kill studies, pre- 

ented as AUC . Individual synergy data for Gram-positive and 
0–24 
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Fig. 2. Time–kill kinetics assay for Gram-negative bacteria. (A) Time–kill curves for Haemophilus influenzae HI 2 ("DUM"). (B) Integrated analysis of time–kill curves for H. 

influenzae (AUC/24 h). (C) Time–kill curves for Neisseria meningitidis NM 3 (30430). (D). Integrated analysis of time–kill curves for N. meningitidis (AUC/24 h). AUC, area under 

the curve; CTRL, control; DPT, daptomycin; AMX, amoxicillin; CTX, cefotaxime; RMP, rifampicin; ns, not significant ( P > 0.05). 
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ram-negative bacteria are available in Supplementary Fig. S1 and 

ig. S2, respectively. For S. pneumoniae , analysis of time–kill curves 

emonstrates a rather quick bactericidal activity of daptomycin 

lone within a few hours only ( Fig. 1 A; Supplementary Fig. S1). 

nfortunately, the selected experimental conditions and concen- 

ration were unable to reveal any synergistic effect due to the ad- 

unction of daptomycin with either amoxicillin, cefotaxime or ri- 

ampicin against S. pneumoniae . Although not significant, the re- 

ults from integrated time–kill curves on pneumococcus showed 

 general trend associated with an improved bactericidal activ- 

ty of β-lactam antibiotics owing to the adjunction of daptomycin 

 Fig. 1 B). Time–kill analysis of daptomycin-based associations to- 

ards L. monocytogenes confirmed a synergistic effect with ri- 

ampicin ( Fig. 1 C). Moreover, the data shown in Supplementary Fig. 

1 also reveal a synergistic effect due to the association of dapto- 

ycin with either amoxicillin or cefotaxime against L. monocyto- 

enes LM 2 (CLIP 2007/01481). The integration of time–kill curves 

llustrates once more a clearly improved bactericidal activity of 

aptomycin-based associations, no matter which antibiotic or L. 

onocytogenes genoserotype ( Fig. 1 D). The results from time–kill 

nalysis for H. influenzae and N. meningitidis ( Fig. 2 ) appear quite 

ifferent from those obtained with Gram-positive bacteria. First, 

he time–kill curve from either Fig. 2 A or Supplementary Fig. S2 

emonstrates a strict indifference of H. influenzae regarding the 

djunction of daptomycin, regardless of the antibiotic or the iso- 

ate. Similar conclusions can be drawn from the integrated data 

isplayed in Fig. 2 B. Interestingly, data from Fig. 2 C,D confirm a 

omparable trend with daptomycin-based associations against N. 

eningitidis . No matter which meningococcus strain, the adjunc- 

p

197 
ion of daptomycin showed no antagonistic effect (Supplementary 

ig. S2). 

. Discussion 

This study brings additional arguments regarding the antimi- 

robial activity of daptomycin, alone or in association with either 

moxicillin, cefotaxime or rifampicin, against selected bacterial 

linical strains associated with invasive infection, mainly menin- 

itis. As a whole, the adjunction of daptomycin was associated 

ith no antagonistic effect on meningococcus, either indifference 

r mild synergy with S. pneumoniae , and synergy against L. mono- 

ytogenes . 

First, the results from MIC tests regarding the activity of both 

-lactam antibiotics and rifampicin towards H. influenzae were 

ighly consistent with those described in the literature, CLSI’s Sub- 

ommittee on Antimicrobial Susceptibility Testing as well as recent 

UCAST 2021 guidelines [19] . Apart from one or a maximum of 

wo serial dilutions, the reported MICs of β-lactam antibiotics and 

ifampicin towards S. pneumoniae, L. monocytogenes and N. menin- 

itidis were comparable with those established by the National Ref- 

rence Centers (data not shown). Regarding Gram-positive bacte- 

ia, the MICs of daptomycin were highly similar to those described 

rom other groups, ranging from 1–8 μg/mL for L. monocytogenes 

20] and ~0.25 μg/mL for S. pneumoniae [ 21 , 22 ] . For Gram-negative

acteria, N. meningitidis NM 4 (30095) was interpreted as interme- 

iate to amoxicillin but considered resistant by the National Refer- 

nce Center for Meningococci. Such slight difference might be ex- 

lained by the possible discrepancies encountered with N. menin- 
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itidis when switching from Etest to standard broth microdilution 

ethod, sometimes greater than 25% depending on the tested an- 

ibiotic [23] . 

Comparison of the results from FICI tests and time–kill analysis 

or Gram-positive bacteria highlighted a lack of strict correlation 

etween the two methods. As an example, associations containing 

aptomycin showed a synergistic effect against S. pneumoniae with 

ICIs < 0.5 with amoxicillin and cefotaxime but no significant syn- 

rgy from time–kill kinetics assay. As reported previously and con- 

rary to the dynamic view of time–kill analysis, the interpretation 

f FICI tests provides a static vision of antimicrobial associations 

24] . Thereby, in the present case, both techniques should be con- 

idered complementary for a better understanding of daptomycin- 

ased associations. All Gram-positive bacteria taken together, the 

esults both from FICI and time–kill analysis seem to reassure a 

lobal improvement of β-lactam antimicrobial activity due to the 

djunction of daptomycin. Unfortunately and probably due to the 

apid bactericidal activity of daptomycin alone against S. pneu- 

oniae , the dynamic synergistic effect of daptomycin associations 

as not fully demonstrated from the present time–kill results on 

neumococcus. Interestingly, the adjunction of daptomycin to ei- 

her amoxicillin, cefotaxime or rifampicin was not associated with 

ny antagonistic effect against H. influenzae and N. meningitidis . Al- 

hough encouraging, these preliminary results in vitro would re- 

uire further confirmation in experimental models to assess the 

lobal safety of daptomycin-based associations and to confirm the 

xact mechanism of antimicrobial activity, notably their ability to 

ecrease bacterial cell lysis. 

Altogether, these results constitute reassuring in vitro confir- 

ation paving the way to a potential use of daptomycin adjunc- 

ion in the treatment of Gram-positive bacterial meningitis, with- 

ut deleterious effect regarding the antimicrobial activity of β- 

actam antibiotics towards N. meningitidis . Such additional in vitro 

ata unveil critical supplementary information supporting the on- 

oing AddaMAP clinical trial, which seeks to show a possible bene- 

t from the addition of daptomycin to the recommended treatment 

f pneumococcal meningitis. 
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